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In the early design stage of an electromagnetic device, sufficient information on uncertainties in design variables is not available. 

Therefore, a reliable optimal design through conventional reliability analysis by probabilistic method cannot be achieved. This paper, 

only with insufficient uncertainty data, proposes a new possibility-based optimal design algorithm to get a robust and reliable optimal 

design of electromagnetic devices. The suggested algorithm adopts a possibility analysis utilizing fuzzy set theory. The possibility 

analysis employs a surrogate model constructed by design sensitivity analysis to mitigate expensive performance analysis. Finally, the 

developed optimal design algorithm is validated through applications to several examples. 

 
Index Terms—Design optimization, probability, possibility theory, reliability.  

 

I. INTRODUCTION 

ERY RECENTLY, in the electrical engineering, the reliabili-

ty-based optimal design (RBOD) algorithms have been 

proposed to minimize the failure event of a constraint and per-

formance against uncertainties [1]. The RBOD algorithms 

assume every uncertain design variable follows a certain prob-

ability distribution. In early design stage of an electromagnetic 

device, however, the uncertainty data are inevitably insuffi-

cient, and thus a suitable probability density function cannot 

be obtained [2]. In addition, the improper modeling of uncer-

tainties may cause overestimation of reliability [3]. It is very 

essential, therefore, to develop a new algorithm guaranteeing a 

reliable optimal design even with insufficient uncertainty data. 

In structural engineering, the possibility analysis has been 

applied to find reliable optimal design against insufficient un-

certainty data [2], [4]. In electromagnetic field, however, this 

is a relatively new topic and has not been researched yet. 

To deal with insufficient uncertainty data, this paper pro-

poses a novel possibility-based robust optimization algorithm 

suitable for electromagnetic problems. In the proposed algo-

rithm, the possibility analysis based on fuzzy set theory is de-

veloped to perform a reliability analysis and combined with 

particle swarm optimization to search for reliable design. Dur-

ing the possibility analysis, to reduce the computational cost 

resulted from expensive performance analysis, a surrogate 

model assisted by sensitivity analysis is constructed and in-

corporated. Finally, the searching ability of the proposed ro-

bust algorithm is investigated and compared with RBOD. 

II. POSSIBILITY-BASED ROBUST OPTIMAL DESIGN 

In the RBOD, the reliability of a design is evaluated as the 

probability of satisfying performance constraint [1]. Its ma-

thematic formulation is written as: 
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where f(·) and g(·) are objective and constraint functions, re-

spectively; nc is the number of constraints; Ri,t is the target 

reliability of i-th constraint; d and x are vectors of nominal 

values for deterministic and uncertain design variables which 

are to be optimized, respectively, while p is uncertain parame-

ters with fixed nominal values and not to be optimized; X and 

P are vectors of uncertain regions around x and p, respectively. 

Due to lack of knowledge or information on data, it is diffi-

cult to calculate probability function P(.) in (1) [4]. In this case, 

the RBOD may fail to lead to a reliable design. An example in 

Fig. 1, is used to show the shortcoming of probabilistic me-

thod in RBOD. From Fig. 1(c), it is obvious that the probabili-

ty of satisfying constraint g(X) ≤ 212 calculated from insuffi-

cient data is 96.2% while that calculated from sufficient data is 

only 88.1%. It can be said the probabilistic method is out of 

work under insufficient information. 

A. Possibility Analysis based on Fuzzy Set Theory 

In the fuzzy theory, for insufficient uncertainty data, it is 

much easier to decide lower and upper bounds. Then, the 

uncertainty set of random variable U(x) is decided by the α-cut, 

which is the range of values of that variable that have 

possibility equal or greater than α defined as: 
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(a) 50 random data of X1                   (b) 1,000 random data of X1 
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(c) Fitted CDF curves of performance function with statistic information  

 50 data: X1~N (2.164, 0.810), X2~N (3.785, 0.879) 

 1000 data: X1~N (1.996, 1.000), X2~N (4.023, 1.002) 

Fig. 1. Analytic example of reliability analysis with insufficient data, where 

constriant is g(X)=X1+12X2+130, and standard deviation of X is σ=1.0. 
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where xL,α and  xU,α are the lower and upper bounds 

respectively. For an electromagnetic system, the random input 

variables will generate a stochastic response as shown in Fig. 

2. Then, the possibility of a failure event is equal to the 

maximum value of possibilities of combinations of input 

values that correspond to failure. The constraint g(d,X,P)≤0 in 

(1) defines a feasible region, therefore, for a specific problem 

shown in Fig. 2, the possibility of constraint violation is: 

  10g    . (3) 

where Π (∙) is the possibility distribution function [5]. If the α-

cut level is very small (α<<1), (3) can be relaxed as: 

   0  or 0 1g g        . (4) 

Furthermore, for simplicity, the possibility constraint in (4) 

can be transferred into a simple nominal constraint as follows:  

max 0g  . (5) 

where g
α

max is global maximum constraint value at the α-cut 

[6]. Finding a design satisfying given possibility level, 

therefore, is to find g
α

max, which satisfies nominal constraint.  

B. Proposed Possibility-Based Optimal Design (PBOD) 

A conservative optimum design is preferred when accurate 

statistical information is not available, so the possibility analy-

sis may be a desirable merit. The PBOD is formulated as:  

  
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where possibility constraint means the possibility of satisfying 

constraint should be bigger than the predefined (1-α)-level. In 

optimization process, the possibility constraint is replaced by 

its equivalent form (5). If (5) is satisfied, in the particle swarm 

optimizer, the corresponding design will be accepted for next 

iteration to search for the global reliable optimal solution. 

As shown in (5), the PBOD problem belongs to a double-

loop optimization. To mitigate expensive computational cost, 

for a specified design (d, x), the performance of any fuzzy 

combination (ξx, ξp) in the α-cut is approximated as: 

( , ) ( , , ) ( ) ( )g g g g      x p x x p pξ ξ d x p ξ x ξ p (7) 

where the gradient vector is obtained by the adjoint variable 

method. Once constraint is approximated by (7), the particle 

swarm optimizer is employed to (7) and (6) searching for both 

the worst constraint in the inner loop and reliable optimal 

design in the outer loop, respectively.  

III. PERFORMANCE INVESTIGATION OF PBOD 

A. Analytic Example 

The analytic problem is defined as: 
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where the design space is 0  x1, x2  10, s = X1+X2-5 and t = 

X1-X2-12. The deterministic optimum is x = (3.1513, 2.3951). 

In RBOD, the uncertain design variables are assumed 

following X~N(μ=x, σ=0.2). In PBOD, the fuzzy set of zero α-

cut is defined as [x-2.063σ, x+2.063σ]. In Table I, as α-level 

increases, the PBOD is much closer to classical optimum. By 

comparing searching directions in Fig. 3, the possibility 

optimum is more conservative than the probability optimum. 

B. Electromagnetic Problem –TEAM 22 

In the TEAM problem 22 [1], three geometric variables of 

outer coil x=[R2, H2/2, D2]
T
 are treated as Gaussian random 

design variables caused by manufacturing tolerance. The 

fuzzy set is set as 3σ level and σ=[0.0153, 0.01, 0.01]
T
 m.  

As shown in Table II, compared with classical optimum, 

both RBOD and PBOD can find reliable designs further from 

constraint boundary. Furthermore, if the α-cut level of 0.05 is 

equivalent to a target failure probability of 0.05 (1-Rt), the 

PBOD is also more conservative than the RBOD. As the α-cut 

level decreases, the optimal design shows more conservatism.  
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Fig. 2.  Random response g and its membership function [6]. 
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Fig. 3. Comparison of different designs (filled markers are optimal ones). 

 

TABLE I OPTIMAL RESULTS COMPARISON OF RBOD AND PBOD 

Methods Parameter x1 x2 f(x) g1(x) g2(x) g3(x) 

Classical ­ 3.1513 2.3951 3.5502 -0.1892 -0.0634 -1.3466 

RBOD Rt=0.95 3.1513 2.7989 3.9534 -0.3897 -0.1606 -1.1434 

PBOD 
α=0.05 3.1355 3.1523 4.3492 -0.5496 -0.2586 -0.9975 

α=0.01 3.1443 3.4679 4.6305 -0.7143 -0.3522 -0.8766 

TABLE II OPTIMIZATION RESULTS OF TEAM 22 BY DIFFERENT METHODS 

Method Parameter R2 H2/2 D2 f(x)(E-2) g1(x) g2(x) 

Classical - 3.0819 0.2439 0.3849 8.7719 -7.896 -1.384 

RBOD Rt=0.95 3.0892 0.2669 0.3500 8.8169 -7.779 -2.076 

PBOD 
α=0.05 3.1106 0.3068 0.3004 9.0611 -7.560 -3.600 

α=0.01 3.1151 0.3155 0.2915 9.1343 -7.519 -3.928 

 


